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We study the quasi-one-dimensional limit of the spin-1/2 quantum Heisenberg antiferromagnet on the
kagome lattice. The lattice is divided into antiferromagnetic spin chains �exchange J� that are weakly coupled
via intermediate “dangling” spins �exchange J��. Using one-dimensional bosonization, renormalization-group
methods, and current algebra techniques, the ground state is determined in the limit J��J. We find that the
dangling spins and chain spins form a spiral with O�1� and O�J� /J� static moments, respectively, atop of which
the chain spins exhibit a smaller O��J� /J�2� antiferromagnetically ordered component along the axis perpen-
dicular to the spiral plane.
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I. INTRODUCTION

The nearest-neighbor Heisenberg antiferromagnet on the
kagome lattice, a two-dimensional network of corner-sharing
triangles, is one of the most geometrically frustrated mag-
nets. Frustration suppresses the magnetic-ordering tendency
and leads to an extensive classical ground-state degeneracy.
Order-by-disorder effects lift the degeneracies in the clas-
sical system and are believed to select the coplanar
�3��3 pattern as the ground state.1–4

The spin-1/2 quantum kagome antiferromagnet is much
less understood. Exact-diagonalization5–11 and series-
expansion studies12,13 indicate the absence of long-range
magnetic order, but the precise nature of the ground state
remains mysterious. For small systems, numerical simula-
tions reveal a large number of singlet states below a small
�and possibly vanishing� spin gap.8,9,14 This observation has
led to the speculation that the ground state of the kagome
lattice might be a gapless critical spin liquid15–17 or a particu-
lar type of valence-bond crystal that exhibits many low-
energy singlet states18–20 �see also Refs. 21 and 22�.

Recently, two new candidate materials for an ideal spin-
1/2 kagome antiferromagnet have attracted considerable at-
tention. First, the mineral ZnCu3�OH�6Cl2, also known as
herbertsmithite, realizes structurally undistorted, magneti-
cally isolated kagome layers with Cu2+ moments on the lat-
tice sites.23–29 Neither magnetic ordering nor spin freezing
has been observed for this material down to the lowest cur-
rently achievable temperature of 50 mK, which is well below
the energy scale of the antiferromagnetic interaction.24–26

While herbertsmithite is structurally perfect, Dzyaloshinskii-
Moriya �DM� interactions and a small number of impurities
might complicate the experimental study of the ideal quan-
tum kagome system.30 Second, there is volborthite,
Cu3V2O7�OH�2 ·2H2O, a spin-1/2 �Cu2+� antiferromagnet,
whose magnetic sublattice consists of well-separated
kagome-type planes.31–34 This material has a monoclinic dis-
tortion, which deforms the equilateral kagome triangles into
isosceles triangles, leading to a difference between two of the
nearest-neighbor exchange constants �J�� and the third one
�J�. Similarly as in herbertsmithite, the spins do not order
down to 1.8 K, an energy scale 50 times smaller than the

exchange-coupling strength in volborthite.31 However, at
very low temperatures evidence for a spin-freezing transition
has been reported.34 The anisotropy ratio of the exchange
couplings, �=J /J�, could not be determined experimentally
so far, but the differing side lengths of the kagome triangles
seem to favor ��1. A recent comparison of exact-
diagonalization calculations with thermodynamic measure-
ments suggests that the spatial anisotropy of the exchange
couplings is small, and that additional interactions beyond
the nearest-neighbor couplings might be present in the min-
eral volborthite.35

In this paper, motivated by the renewed interest in the
kagome systems and the recent experiments on volborthite,
we investigate the spatially anisotropic version of the quan-
tum kagome antiferromagnet. We shall focus on the quasi-
one-dimensional �1D� limit, J��J, where the model consists
of quantum-critical spin-1/2 chains weakly coupled together
via intermediate “dangling” spins �see Fig. 1�. In this situa-
tion the competition between quantum fluctuations and the
strong geometric frustration of the kagome lattice is particu-
larly keen. The anisotropic quantum kagome antiferromagnet
has been studied previously by a variety of techniques, all of
which employ perturbation theories in some “artificial” small
parameter. Examples include large-N expansions of the
Sp�N�-symmetric generalization of the model,36,37 a block-
spin perturbation approach to the trimerized kagome
lattice,37 and semiclassical calculations in the limit of large
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FIG. 1. �Color online� Spatially anisotropic kagome lattice with
nearest-neighbor exchange J �blue solid bonds� among chain spins
�S� and J� �black dashed bonds� among chain spins and interstitial
spins �s�.
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spin.37,38 Our approach is complementary to these studies in
that it offers a fairly controlled analysis of the quasi-one-
dimensional limit using powerful field-theoretical
methods39–41 that have originally been developed for the in-
vestigation of quantum critical systems in one dimension.
Recently, the quasi-one-dimensional version of the kagome
antiferromagnet in a strong magnetic field, assuming that the
intermediate spins are fully polarized, has been studied using
similar techniques.42 The present paper treats the case of zero
external field.

Our approach rests on the assumption that in the quasi-
one-dimensional limit, J��J, the intermediate spins order at
a temperature scale Ts much higher than the ordering tem-
perature Tch of the weakly coupled chains. This is justified a
posteriori by our finding that the effective interaction among
the interstitial spins, which sets the temperature scale Ts, is
of order �J��2 /J, whereas the most relevant effective interac-
tion among the weakly coupled spin-1/2 chains, which deter-
mines Tch, is of order �J��4 /J3. Consequently, we can divide
the theoretical analysis into three separate stages. First, we
derive the effective interaction among the intermediate dan-
gling spins using perturbative renormalization-group �RG�
transformations in the time direction. These considerations
are complemented by numerical estimates of the induced
short-distance couplings among the dangling spins. Second,
we analyze the ground state of the resulting spatially aniso-
tropic triangular lattice of dangling spins as a function of
first- and further-neighbor interactions. We find that in the
ground state the interstitial spins form a rotating spiral with a
small �and possibly vanishing� wave vector parallel to the
chain direction. Third, we determine the most relevant inter-
chain interactions using a symmetry analysis and RG consid-
erations. Besides the effective interchain interaction, the spi-
ral magnetic field produced by the intermediate spins induces
another perturbation to the system of decoupled Heisenberg
chains. Finally, we analyze these perturbations to the fixed
point of the independent �decoupled� spin-1/2 chains with
the help of operator-product expansions �OPEs�.

The ultimate result of our analysis is that all spins order,
with the noncoplanar configuration shown in Fig. 2, in which
the interstitial and chain spins predominantly form coplanar
spirals with a wave vector �q ,0� but with a reduced O�J� /J�
static moment on the chains. The chain spins are weakly
canted out of the plane, with the O��J� /J�2� normal compo-
nents forming an antiferromagnetically ordered pattern. The
precise value of q cannot be reliably determined from our
analysis, but we expect that q�1 and q=0 is a distinct pos-
sibility. In the q=0 case, the state becomes coplanar. This
ordered state differs from those found in two other recent
studies37,38 using other methods, but there are similarities.
These are discussed in Sec. VII.

At first glance, it might be counterintuitive that the inter-
stitial spins and the chain spins order in a nearly ferromag-
netic fashion among themselves rather than in an antiferro-
magnetic pattern. But it has to be kept in mind that the
ordering of the quasi-one-dimensional version of the kagome
antiferromagnet is driven by the weakly coupled interstitial
spins, which order at a larger energy scale than the chain
spins. There is no a priori reason that the effective interac-
tion among the interstitial spins should be purely antiferro-

magnetic. In fact, it turns out that there is an effective ferro-
magnetic interaction along the diagonal bonds connecting
nearest-neighbor interstitial spins �see Sec. IV�. Together
with an effective antiferromagnetic interaction along the
horizontal bonds connecting neighboring interstitial spins,
this ultimately leads to the spiral order of the dangling spins.
The spiral order of the chain spins can then be understood as
arising from the linear response to the local field of the or-
dered interstitial moments.

The remainder of the paper is organized as follows. Sec-
tion II describes the lattice Hamiltonian, its symmetries, and
its low-energy field-theory description. In Sec. III we analyze
the low-energy interactions using symmetry considerations
and a perturbative renormalization treatment. In Sec. IV we
use numerical methods to estimate the interaction strength
among the interstitial spins and derive an effective model for
the dangling spins on the triangular lattice. Section V deals
with the ground-state analysis of the triangular lattice. The
perturbative analysis of weakly coupled chains in a spiral
magnetic field with a small wave vector, q�1, is presented
in Sec. VI. Our conclusions and a discussion of the relation
to other results are given in Sec. VII. Some technical aspects
of the RG calculations are relegated to Appendix A. For
completeness, we study in Appendix B the ordering of the
weakly coupled chains in the presence of a spiral field with a
large wave vector.
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FIG. 2. �Color online� �a� Three-dimensional perspective view
of the spin-ordering pattern. The interstitial spins �red arrows� form
a coplanar spiral with an O�1� local moment on the x-y plane. The
components of the chain spins �gray arrows� within the x-y plane
also form a spiral but with static moment of O�J� /J� and antiparal-
lel to the interstitial spins. The out-of-plane components �z direc-
tion� of the chain spins are nonzero but even
smaller—O��J� /J�2�—and ordered antiferromagnetically along and
between the chains. �b� Top view of the spin-ordering pattern. The
vertical component of the chain spins is indicated using + �upward
pointing� and − �downward pointing�.
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II. MODEL DEFINITION AND LOW-ENERGY
HAMILTONIAN

The Hamiltonian of the Heisenberg antiferromagnet on
the anisotropic kagome lattice �see Fig. 1� is given by H
=H0+V, where H0 describes the decoupled set of chains with
nearest-neighbor antiferromagnetic Heisenberg interactions,

H0 = J�
i,y

Si,y · Si+1,y , �1a�

and V is the interaction among the chains and the intermedi-
ate spins,

V = J��
i,y

s2i�1/2,2y�1/2 · �S2i,2y + S2i�1,2y + S2i,2y�1

+ S2i�1,2y�1� . �1b�

For the interstitial spins we shall use the symbol s, whereas
the chain spins are denoted by S. The anisotropic kagome
lattice has rotation, translation, and reflection symmetries.
The translational subgroup is generated by the translations T1
and T2, which move the lattice by two units along the hori-
zontal and one of the diagonal axes, respectively. The rota-
tional subgroup consists of � rotations about the lattice sites
and about the centers of the hexagons. We can distinguish
two types of reflection symmetries: reflections R1 about a
vertical line through a midpoint of a chain bond �link parity�,
and reflections R2 about a horizontal line passing through the
intermediate dangling spins �see Fig. 1�.

Let us now describe the chains in the continuum limit,
which is applicable as long as J�J�. In this limit the low-
energy properties of the antiferromagnetic spin-1/2 chains
are governed by the Wess-Zumino-Novikov-Witten
�WZNW� SU�2�1 theory, and the chain-spin operator Si,y can
be decomposed into its uniform My�x� and staggered Ny�x�
spin magnetizations,

Si,y → a0�My�x� + �− 1�xNy�x�� , �2a�

where x= ia0 and a0 denotes the lattice spacing. The uniform
magnetization can be written in terms of left- and right-
moving SU�2� currents, My =Jy,R+Jy,L. Another important
operator describing low-energy properties of the spin-1/2
chains is the staggered dimerization 	y�x�, which is defined
as the continuum limit of the scalar product of two neighbor-
ing spins,

Si,y · Si+1,y → �− 1�x	y�x� . �2b�

The scaling dimension of these continuum operators deter-
mines the relevance of the operator in the RG sense with
respect to the Luttinger liquid fixed point of the decoupled
chains. The uniform magnetization My has scaling dimension
1, whereas both the staggered spin magnetization Ny and the
staggered dimerization 	y have scaling dimension 1/2. The
microscopic lattice symmetries of H �Eq. �1�� leave an im-
print on continuum description �2�. That is, the action of the
space-group symmetries on the continuum operators is given
by

T1: M → M, N → + N, 	 → + 	 , �3a�

R1: M → M, N → − N, 	 → + 	 , �3b�

R2 � T2: M → M, N → − N, 	 → − 	 , �3c�

where, for brevity, we have suppressed the chain index.
Other symmetry operations on the continuum fields are ei-
ther trivial or can be rewritten as a product of the above
transformations.

The three continuum fields M, N, and 	 form a closed
operator algebra with respect to certain operator-product ex-
pansions, which are widely used in the literature.39–41,43–46

For example, the right-moving SU�2� currents JR satisfy the
following chiral OPEs:

JR
a�x,
�JR

b�0� =
�ab/�8�2�

�u
 − ix + a0�
�2 +
i	abcJR

c �0�/�2��
u
 − ix + a0�


,

�4a�

with imaginary time 
, �
=sgn 
, the short-distance cutoff
a0, and spin velocity u=�Ja0 /2. Similar relations hold for
the left-moving spin currents JL. The product of JR and N
can be expanded as

JR
a�x,
�Nb�0� =

iabcNc�0� − i�ab�0�
4��u
 − ix + a0�
�

. �4b�

The above equalities are understood to be valid only when
inserted into correlation functions and in the limit where the
two points �x ,
� and �0,0� are close together. These current
algebra relations will allow us to compute one-loop RG
equations by purely algebraic means �see Secs. III and VI�.

Using relation �2a�, we can derive a naive continuum limit
of the interaction among the chains and the intermediate
spins �Eq. �1b��. First, we note that the intermediate spins
s2i+1/2,2y−1/2 couple symmetrically to S2i,2y and S2i+1,2y.
Hence, the staggered spin magnetization enters only via its
first derivative in the continuum version of the interaction V,
and we can set

S2i,2y + S2i+1,2y → 2a0M2y�2x� −
a0

2

2
�xN2y�2x� . �5�

In the above and the following, we use the notation that the
derivative in �xN2y�2x� is with respect to the full argument,
i.e., more explicitly

�xN2y�2x� � �XN2y�X��X=2x. �6�

With this, the interaction in Eq. �1b� reads V=V1+V2, with

V1 = �1�
x,y

s2x�1/2,2y�1/2 · �M2y�2x� + M2y�1�2x�� ,

V2 = �2�
x,y

���s2x�1/2,2y�1/2 · �x�N2y�2x� + N2y�1�2x�� ,

�7�

where the bare coupling constants are given by �1=2J�a0
and �2=−J�a0

2 /2, which follows from substituting Eq. �5�
into Eq. �1b�. We have retained the next-to-leading interac-
tion V2 as it will produce, in combination with the leading
term V1, relevant interchain couplings with respect to the
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fixed point of the decoupled chains �see Sec. III�. The con-
tinuum description of the interaction V �Eq. �7�� is necessar-
ily invariant under the symmetry transformations �Eq. �3��.
In particular, we note that V does not contain a contribution
s2x+1/2,2y−1/2 ·N2y�2x� which is forbidden by the symmetries
of the spatially anisotropic kagome lattice �link parity R1
sends N→−N�.

III. RENORMALIZATION-GROUP TREATMENT

Here, we study the effective low-energy interactions
among the dangling spins �H��, as well as those between
nearest-neighbor chains �Vch�, using both a symmetry analy-
sis and perturbative renormalization-group transformations.
The goal is to understand which interactions among intersti-
tial spins, among chains, or betwixt the two are most rel-
evant, and further at what energy scales do they become
important in determining the low-energy physics. Techni-
cally, Hamiltonian �1� with the chains treated in the con-
tinuum limit is formally rather similar to a Kondo lattice. As
the Hamiltonian retains some local character due to the in-
termediate spins, in the framework of the RG approach, this
problem develops only in time, and the energy is the only
variable that is being rescaled as the RG progresses. Such an
RG scheme is similar in spirit to the one employed in the
context of a single impurity coupled to a Luttinger liquid
�see, for example, Refs. 47–49�.

A. Symmetry analysis

Before proceeding with the RG derivation of the low-
energy effective interactions, we first write down the most
general form of Vch and H� that are allowed by the symme-
tries of the spatially anisotropic kagome lattice. Such a gen-
eral symmetry consideration will reveal all relevant
symmetry-allowed interactions that are expected to be gen-
erated through RG transformations when all nominally irrel-
evant terms are taken into account. The space-group symme-
tries needed for this analysis have been discussed in Sec. II
�see Eq. �3��.

We begin with the interchain Hamiltonian Vch. In prin-
ciple, the number of allowed interchain interaction terms is
infinite. However, only a handful of terms will be important.
Most significant are those terms which are most relevant in
the RG sense �with respect to the Luttinger liquid fixed point
of the decoupled chains�. This amounts to two-chain interac-
tions involving no derivatives and only continuum fields that
have small scaling dimension. Among these, we may further
restrict ourselves to nearest-neighbor chain interactions, as
the magnitude of further-neighbor chain interactions is ex-
pected to decrease with separation distance. The continuum
operators with the smallest scaling dimension are the stag-
gered dimerization 	y and the staggered magnetization Ny.
Therefore, we find

Vch = �
y
	 dx
�NNy · Ny+1 + �		y	y+1� , �8�

where the value of the coupling constants �N and �	 will
have to be determined by microscopic calculations. Using

Eq. �3� it is straightforward to check that these are the only
terms with lowest possible scaling dimension 1 that satisfy
the symmetry requirements of the spatially anisotropic
kagome lattice.

In addition to these most relevant interchain interactions,
it is necessary to consider also a few less relevant terms, as
these will arise at lower order in the renormalization-group
treatment below, and are important for generating the more
relevant terms in Eq. �8� above. These are

Vch
�1� = �

y
	 dx
��N�xNy · �xNy+1 + �MMy · My+1� . �9�

Next, we turn to interactions among the interchain spins
H�. Considering only terms that arise at O��J��2�, we find
that H� is given by Heisenberg interactions among dangling
spins whose y coordinates differ by at most one unit. The
coupling constants of these Heisenberg interactions are re-
stricted by the symmetries of the lattice. With these condi-
tions, H� can be conveniently written in the form �see Fig. 3�

H� = �
x,y,r�0

J2rs2x�1/2,2y�1/2 · s2x�1/2+2r,2y�1/2

+ �
x,y,r

J�2r+1�s2x�1/2,2y�1/2 · s2x�3/2+2r,2y�1/2. �10�

Since the couplings Jr decrease in magnitude with increasing
�r�, we can truncate the above sums over r after the first few
terms.

B. Renormalization-group results

To determine the fluctuation-generated corrections to the
low-energy effective action, we perform a perturbative RG
analysis of the interactions V �Eq. �7�� to one-loop order. The
perturbation theory is formulated by expanding the partition
function Z=�exp�−S0−�d
V� up to quadratic order in the
couplings,
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FIG. 3. �Color online� Exchange paths of the triangular lattice
formed by the intermediate spins s of the spatially anisotropic
kagome lattice. Solid black lines denote the nearest-neighbor ferro-
magnetic exchange J1 �a–b and b–c bonds�. Dotted black lines the
nearest-neighbor antiferromagnetic exchange J2 �a–c bond�. The
further-neighbor interactions J3 �a–d bond� and J4 �a–e bond� for
the spin sa are illustrated with red arrows. The chain bonds of the
anisotropic kagome lattice are indicated in light blue �cf. Fig. 1�.
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Z 	 e−S0�1 −	 d
V +
1

2
T	 d
1d
2V�
1�V�
2�� .

�11�

Here, S0 denotes the fixed-point action, T is the time-
ordering operator, and 
i is the imaginary time. Implicit in
Eq. �11� is a regularization, such that the integrals appearing
in the expansion are taken only over the regions in which no
two times are closer than some short-time cutoff �=a0 /u.
The RG proceeds by increasing this cutoff infinitesimally
from � to b�, where b=ed� and d��0 is the usual logarith-
mic change of scale. To do this, all pairs of times 
1 ,
2 such
that �� �
1−
2��b� must be fused using the operator-
product expansion, and the integral over 
1−
2 in this range
carried out. One thereby obtains a new partition function
with renormalized interactions and the increased cutoff. We
then perform an additional trivial rescaling of time and space
coordinates to restore the original cutoff:

Ny�x,
� → b−1/2Ny�x/b,
/b� ,

My�x,
� → b−1My�x/b,
/b� ,

sx,y�
� → sx,y�
/b� . �12�

We note that the spatial rescaling is not required to restore
the cutoff but is natural and convenient for the continuum
fields of the chains, which are described by a Lorentz invari-
ant field theory. In contrast, we obviously cannot rescale the
coordinates of the discrete spin operators of the interstitial
spins. This difference leads to the appearance of an explicit
RG length scale in the effective couplings between the
chains and interstitial spins, V1 and V2, in the renormalized
Hamiltonian:

V1��� = �1�
x,y

s2x�1/2,2y�1/2 · �M2y�2x�� + M2y�1�2x��� ,

V2��� = �2�
x,y

���s2x�1/2,2y�1/2 · �x�N2y�2x�� + N2y�1�2x��� ,

�13�

where x�=xe−�.
With this, the derivation of the RG equations is straight-

forward and follows closely the methods used in Refs.
47–49. Details of the calculations can be found in Appendix
A. Taking into account V=V1+V2 to one loop, we obtain RG
equations for both the interchain couplings and the couplings
between the interstitial spins. The former are

d�1

d�
= +

1

�u
�1

2,
d�2

d�
= −

1

2
�2 +

1

�u
�1�2,

d��N

d�
= − ��N −

�2
2

u
,

d�M

d�
= − �1

2 +
�M

2

2�u
,

d�N

d�
= �N +

��N�M

8��2u
,

d�	

d�
= �	 −

3��N�M

16��2u
. �14�

Note that the strongly relevant interactions �N and � are not

generated at one loop from �1 and �2. Instead, the former are
generated from the subdominant ��N and �M terms. This is
the reason the latter terms needed to be included in our treat-
ment.

The RG equations for the interstitial spin couplings are
functional, insofar as they describe the flow of the full set of
interactions Jr. We find

dJ2r

d�
= J2r + IM�re−��

�1
2

u
+ IN�re−��

�2
2

u
, �15a�

where

IM�r� = �
��=�1

�

4�2

1

�� + ��i2r�2 ,

IN�r� = 8CN
���2 − 8r2�
��2 + 4r2�5/2 , �15b�

where CN is the amplitude of the �NaNa� correlator. Analo-
gous expressions can be derived for the interactions J�2r+1�,
i.e., the second term in H� �Eq. �10��.

In passing, we note that the form of the RG flows in Eq.
�14� is highly constrained by the symmetry of the full �spa-
tially anisotropic� kagome lattice, and this is necessary to
avoid the generation of strongly relevant interactions at this
order. In contrast, for the kagome strip of extension one in
the y direction, there is no translational symmetry T2, and
consequently symmetry �3c� is absent. This allows for the
appearance of a term in the renormalized Hamiltonian pro-
portional to �dx	y�x ,
�, which is indeed generated propor-
tionally to �1�2 in that case �compare with Ref. 50, and see
Ref. 51�. This term is strongly relevant and generates a
gapped dimerized state in that model.

C. Implications

The RG flows in Eqs. �14� and �15� give considerable
insight into the emergent energy scales in the problem.
Though interactions between the chains and between the in-
terstitial spins are both generated from the bare interactions
�1 and �2, their characters are distinctly different. Crucially,
we see from Eq. �14� that among the chains, only marginal
and irrelevant interactions—��N and �M—are generated at
this order. Since the bare values �1��=0���2��=0� are both
of O�J��, this includes all effective generated interactions up
to O��J��2�. A simple scaling argument shows that the low-
energy excitations of the chains can be modified from those
of decoupled chains only on energy scales parametrically
smaller than �J��2.

To understand this, let us consider the solutions to Eq.
�14� in somewhat more detail. The most important observa-
tion is that the strongly relevant interactions, �N and �	 �third
line of Eq. �14��, once they are generated, grow rapidly and
exponentially with �. They are therefore dominated by the
effects of their “source” terms �proportional to ��N�M� at
small �, which are most amplified under the growth. The
source terms at small scale are themselves of order �J��2 /J,
as described above. Therefore we expect that the relevant
interactions will be, at least until they renormalize to large
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values, of order �J��4 /J3. Indeed, the ultimate effect of all
this short-scale renormalization is completely equivalent to
including fluctuation-generated “bare” interactions of this
same order. This procedure has been described in consider-
able detail in prior publications, in which the formal manipu-
lations closely parallel those used here. See Refs. 39 and 41
for further information. Therefore we will in Sec. VI simply
take the relevant couplings to have the appropriate values:

�N�� � 1� = +
2�J��4

4�4J3 , �	�� � 1� = −
3�J��4

4�4J3 . �16�

In contrast, the interactions Jr generated in Eq. �15� at
O��J��2� among the dangling spins will clearly modify their
energetics at this same order since they act within an other-
wise completely degenerate manifold. More formally, this
follows directly from the RG flows �Eq. �15��, which shows
that the interstitial interactions will grow to O�1� values
�actually to any fixed value� by a scale Je��J��1

2 ,�2
2�

��J��2 /J. Therefore we see that, as claimed in Sec. I, the
ordering �as we shall see, this is the result of these interac-
tions� of the interstitial spins occurs at an energy scale at
which the chains are unaffected by their couplings to the
interstitial spins and each other.

Having understood the hierarchy of energy scales result-
ing from the RG, we can proceed to try to understand in
more detail the ordering of the interstitial spins. In principle,
one may do so by integrating the flow equations for the Jr
couplings �Eq. �15�� from �=0 to the ordering scale, �
=2 ln�J /J��. This is equivalent to performing the time inte-
grals not over the infinitesimal shell in the vicinity of the
running cutoff, but instead from microscopic times � up to
times of order ��J /J��2. Inspection of expressions in Eq.
�15b� shows that these integrals in fact are dominated by
times of the order of the microscopic time. Indeed the upper
limit of the time integration can be extended to infinity with-
out significant modification of the result.

The dominance of short times has physical significance: it
implies that the generated interstitial spin interactions are in
fact controlled by high-energy physics of the Heisenberg
chains, i.e., correlations of the chain spins on the scale of a
few lattice spacings. These short-distance correlations are not
precisely captured by the continuum bosonization or current
algebra approach. Therefore, if an accurate determination of
these dangling spin interactions is desired, we must abandon
�for the moment� the field-theory methodology and return to
a direct study of the lattice model. Conversely, because the
generated interactions are dominated by short-distance phys-
ics, we expect that no serious divergences will arise in a
microscopic calculation. In Sec. IV we show how perturba-
tive and numerical methods may be used to perform the nec-
essary calculations and obtain the fluctuation generated inter-
actions among the interstitial spins. Using these precise
results we determine the interstitial spin ordering in Sec. V.
Following this, in Sec. VI we will return to the lower-energy
physics resulting from the fluctuation-generated interactions
��N and �M in Eq. �14�, which will ultimately lead to order-
ing among the chain spins as well.

IV. NUMERICAL ESTIMATES OF INTERACTIONS
AMONG DANGLING SPINS

The dynamical structure factor of the spin-1/2 antiferro-
magnetic Heisenberg chain, S�q ,��, can be related to the
coupling constants of the effective interactions among the
dangling spins, Jr, by means of second-order degenerate per-
turbation theory in the interaction V �Eq. �1b��. Using avail-
able numerical data for S�q ,��, both in the two-spinon ap-
proximation and for finite-size systems, this gives an
estimate for the sign and relative strength of the interactions
Jr.

To formulate the perturbation theory in V, we denote the
ground state of the unperturbed Hamiltonian H0 �Eq. �1a�� by
�0� and introduce the ground-state projection operator P
= �0��0�. With Q=1− P, any given state ��� of chain �S� and
interchain �s� spins can be written as ���= ��0�+ ��Q�,
where ��0�= P��� and ��Q�=Q���. We note that ��0� de-
scribes the state with the chain spins in the ground state,
while the state of the s spins remains arbitrary, i.e., ��0�
= �0��
s��. Following along the lines of Refs. 42 and 52, we
obtain an eigenvalue equation for ��0�,

�H0 + PV
1

1 − RQV
RV���0� = E��0� , �17�

with the resolvent R= �E−H0�−1. Equation �17� is highly
nonlinear in the energy E since the left-hand side of this
equation depends on E through the resolvent R. Performing a
perturbation expansion on the operator �1−RQV�−1 gives at
second order in J�

�H0 + PVR0V���0� = E��0� , �18�

where R0= �E0−H0�−1 is a function of the ground-state en-
ergy E0 of the decoupled chains. Multiplying Eq. �18� from
the left by �0� and inserting the perturbation V �Eq. �1b��
yields, after some algebra, a Schrödinger equation for the
interchain spins alone,

H��
s�� = �E − E0��
s�� , �19a�

with the effective interaction among interstitial spins,

H� = 4�J��2 �
x,y,r�0

A�2r��s2x�1/2,2y�1/2 · s2x�1/2+2r,2y�1/2�

+ 2�J��2 �
x,y,r

A��2r + 1���s2x�1/2,2y�1/2 · s2x�3/2+2r,2y�1/2� .

�19b�

Here, A�r� is the linear combination

A�r� = GM�r − 1� + 2GM�r� + GM�r + 1� �20�

of the ground-state expectation values

GM�r� = �0�S2x,y
a 1

E0 − H0
S2x+r,y

a �0� . �21�

In deriving Eq. �19� we made use of the fact that expectation
value �21� is independent of both the x and y coordinates,
due to translational invariance. The linear combination in Eq.
�20� arises because every interstitial spin s is coupled to pairs
of chain spins S. From inspection of Eq. �19� we find the
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following expressions for the exchange couplings Jr, which
have been defined in Eq. �10�:

J2r = 4�J��2A�2r� ,

J2r+1 = 2�J��2A�2r + 1� , �22�

with r�0. The factor of 2 difference between the first and
the second lines in Eq. �22� accounts for the fact that inter-
stitial spins s with the same y coordinate, say, y− 1

2 , are con-
nected via both the y and y−1 chains.

Finally, by inserting a resolution of identity in Eq. �21�,

GM�r� = �
n�0

�0�S2x,y
a �n�

1

E0 − En
�n�S2x+r,y

a �0� ,

with �n� denoting the eigenstates of H0, we realize that GM�r�
�Eq. �21�� is just a spectral representation of the zero-
frequency Matsubara spin Green’s function

GM�r� = − 	
0

�

d
�T
S
a�2x + r,
�Sa�2x,0�� . �23�

The zero-frequency Green’s function GM�r� in turn is con-
nected to the dynamical structure factor S�q ,�� via a
Kramers-Kronig transform,

GM�r� =
2

�
	

0

�

d��	
0

+�

dqS�q,���
cos�qr�

��
. �24�

Inserting the above equation into the definition of A�r� �Eq.
�20�� gives

A�r� =
8

�
	

0

�

d��	
0

�

dq cos2q

2
S�q,���

cos�qr�
��

. �25�

Having related the interstitial exchange interactions Jr to the
dynamical structure factor, we evaluate numerically S�q ,w�
in Secs. IV A and IV B to obtain precise estimates for the
first few interstitial couplings J1¯J4.

A. Two-spinon dynamical structure factor

First we compute the couplings Jr using the two-spinon
approximation for S�q ,��. The two-spinon contribution to
the dynamical structure factor can be explicitly written as
�see Refs. 53 and 54�

S2�q,�� =
1

2�

e−I���q,���

��U
2 �q� − �2

���q
U − �����q

L − �� , �26�

with the fundamental integral

I��� = 	
0

�

dt
et

t

cosh�2t�cos�4�t� − 1

cosh t sinh�2t�
�27�

and with the lower continuum boundary �q
L= �

2 sin q and the
upper continuum boundary �q

U=� sinq
2 . The auxiliary vari-

able � is a function of q and �,

��q,�� =
4

�
acosh��U

2 �q� − �L
2�q�

�2 − �L
2�q�

. �28�

Inserting S2�q ,�� into formula �25�, we obtain A�r� in the
two-spinon approximation,

A2�r� =
4

�2	
0

�

dq cos2q

2
cos�qr�	

�q
L

�q
U d��

��

e−I���q,����

��U
2 �q� − ��2

.

�29�

Expression �29� can be evaluated numerically in an efficient
way provided one splits off the singular part from integral
�27� �see Ref. 53�. In doing so, we obtain for the ratio be-
tween the couplings J2 and J1 the following result within
the two-spinon approximation:

J2

J1


2A2�2�
A2�1�

 − 0.7446. �30a�

We find that J1 is ferromagnetic, while J2 is antiferromag-
netic. Similarly, the magnitudes of further-neighbor interac-
tions are estimated to be

J3

J1
 + 0.1909,

J4

J1
 − 0.2312, �30b�

with J3�0 and J4�0.
The two-spinon intensity accounts for about 73% of the

total structure factor intensity.53 The remaining part is carried
by states with a higher number of spinons, and it is believed
that the four-spinon intensity together with the two-spinon
intensity cover about 98% of the spectral weight.54 In prin-
ciple, it would be possible to evaluate the ratios in Eq. �30�
within the four-spinon approximation. However the involved
numerical integrals are rather expensive to compute. Instead,
we shall use finite-size results for the structure factor to ob-
tain a second estimate for the magnitude of the couplings Jr.

B. Finite-size results

We compute A�r� using numerical data from the ABACUS

database55 for the dynamical structure factor in a finite sys-
tem of N=500 sites. These numerical data were obtained
using a method based on the Bethe ansatz framework, which
involves a summation over the so-called determinant repre-
sentations for form factors of spin operators on the lattice.56

In these computations the momentum delta functions are
smoothed out by including a finite broadening ��1 /N. Us-
ing the numerical data with a smearing �=0.01, we obtain
for the ratio J2 /J1

J2

J1


2AN�2�
AN�1�

 − 0.7013, �31a�

with J1�0 and J2�0, in accordance with Eq. �30a�. The
estimated magnitudes of further-neighbor interactions are

J3

J1
 + 0.2349,

J4

J1
 − 0.1453, �31b�

where J3 is ferromagnetic and J4 is antiferromagnetic. As
anticipated from the RG treatment in Sec. III B, we observe
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that the magnitude of the coupling strengths decreases with
spin separation distance.

Comparing Eq. �30� to Eq. �31�, we infer that the values
of J2 /J1 agree well �within 10%�, whereas the agreement
between further-neighbor interactions is worse. Since the
two-spinon approximation misses 27% of the structure factor
intensity, we suspect that the true values of the coupling
strengths are closer to the finite-size results �Eq. �31�� than to
the two-spinon estimates. In Sec. V, we are going to work out
the interstitial spin ordering using results �30� and �31� and
neglecting any longer-range interactions with Jr�4.

V. SPATIALLY ANISOTROPIC TRIANGULAR LATTICE

As the discussions in Sec. III have shown, the ordering of
the dangling spins s, which occurs at an energy scale
O��J��2�, is independent of the chain ordering. At the energy
scale O��J��2� the spins s, which form a spatially anisotropic
triangular lattice,57–60 are described by the effective Hamil-
tonian H� �Eq. �10�� with antiferromagnetic interactions
along the horizontal bonds �J2� and ferromagnetic interac-
tions along the diagonal bonds �J1�; see Fig. 3. Neglecting
third-nearest-neighbor and longer-ranged interactions, we
can truncate the sums over r in Eq. �10� after the first two
terms and obtain

H� � J1�
�ij�

si · s j + J2�
�ij�

si · s j + J3�
�ij��

si · s j + J4�
�ij��

si · s j ,

�32�

where �ij� and �ij�� denote the diagonal bonds and �ij� and
�ij�� denote the horizontal bonds connecting first- and
second-nearest neighbors, respectively �see Fig. 3�. The val-
ues of the coupling strength J1¯J4 are given by Eqs. �30�
and �31�.

This is a nontrivial spin-1/2 quantum model. However, it
is also one which has been heavily studied, at least in the
nearest-neighbor limit. In this case, over the vast majority of
the phase diagram, the quantum ground state agrees with the
classical one. This is particularly true when the couplings are
such that the classical ground state is “close” to ferromag-
netic �indeed the fully polarized ferromagnetic state is of
course an exact eigenstate, as usual�. We therefore expect
that a classical analysis is reliable, and pursue it below.

The classical phase diagram of Hamiltonian �32� is found
by replacing the spin operators with classical coplanar spiral
vectors,

si = x̂ cos�q · ri� + ŷ sin�q · ri� , �33�

and minimizing the energy, which amounts to minimizing
the Fourier transform of the exchange coupling61,62

J�q� = �
i,j

Ji,j cos�q · �ri − r j�� , �34�

where ri denotes the position of site i in real space, and x̂ and
ŷ are two orthogonal unit vectors. In our case, Eq. �34� gives

J�q� = 2J1 cos qx cos qy + J2 cos�2qx� + 2J3 cos�3qx�cos qy

+ J4 cos�4qx� , �35�

with J1 ,J3�0 and J2 ,J4�0.
For simplicity, let us first analyze the minima of Eq. �35�

for the case J3=J4=0. This gives q= �qx ,0� with

qx = �0, J2 � �J1�/2
arccos�− J1/�2J2�� , J2 � �J1�/2.� �36�

That is, for J2� �J1� /2 the classical ground state is ferro-
magnetic, whereas for J2� �J1� /2 the ground state is a spiral
state rotating along the x direction with the wave vector q
= �qx ,0�. �To study how quantum fluctuations alter the clas-
sical ground state in the case J3=J4=0, we have performed
a linear spin-wave analysis �not shown�. The magnetization
decreases smoothly from 1/2 to zero as J2 / �J1� is increased,
with a kink at J2 / �J1�=1 /2.�

In the case of nonzero further-neighbor interactions, J3
�0 and J4�0, there is no simple explicit expression de-
scribing the global minima of J�q� �Eq. �35��. Numerically
we find that the minimum of J�q� with the coupling values
given by Eq. �31� �the finite-size results� occurs at q=0; i.e.,
the ferromagnetic state is the ground state. However, the cou-
pling parameters of Eq. �31� are rather close to the boundary
of a spiral phase in the coupling parameter space 
Jr �r
=1, . . . ,4�. In particular, the coupling parameters in Eq. �30�
�the two-spinon result� yield a spiral state with q
2��0.08,0�. Therefore, we shall consider in what follows
a cycloidal spiral ground state with wave vector q= �qx ,0�,
with qx small, which includes as a limiting case the ferro-
magnetic state �qx=0�, that is,

�s2x�1/2,2y�1/2� = s0�x̂ cos�2qxx �
qx

2
� + ŷ sin�2qxx �

qx

2
�� .

�37�

Here s0�1 /2 is the local static moment �staggered magne-
tization� of the spiral state.

VI. COUPLED HEISENBERG CHAINS IN A SPIRAL
MAGNETIC FIELD

We are now in a position to address the spin-ordering
pattern of the chains. We assume that the interstitial spins
have ordered into the spiral state given by Eq. �37�, and
focus on the lower-temperature scale of order �J��4 /J3, at
which the chain spins become affected by relevant interchain
interactions. The unperturbed system of antiferromagnetic
Heisenberg chains is given by �note that we let x→x−1 /2
compared to Sec. V�

H0 = J�
x,y

Sx−1/2,y · Sx+1/2,y . �38�

The perturbations are: �i� coupling between chain and inter-
chain spins, described by Eq. �40�; �ii� marginal “back-
scattering” term, which is already present for a single
Heisenberg chain; and �iii� the fluctuation-generated inter-
chain interactions �Eq. �8��.
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Since the interchain spins form a two-dimensional or-
dered spiral state, described in Sec. V, the main effect of their
interaction with the chain spins S is described by the spiral
magnetic-field vector �sx� given by �note that we let qx→q
compared to Sec. V�

�sx� = s0�x̂ cos�qx� + ŷ sin�qx�� , �39�

with q small. The spiral magnetic field introduces the follow-
ing perturbations to this system of decoupled spins:

HS = J��
x,y


S2x−1/2,y · �s2x−1 + s2x� + S2x+1/2,y · �s2x + s2x+1��

�40�

=�
x,y

hx+1/2 · Sx+1/2,y , �41�

with

hx = 2h0 cos�q/2��x̂ cos�qx� + ŷ sin�qx�� �42�

and the field strength h0=s0J�.
The simplest effect of the spiral field, as for any field, is to

induce a corresponding spiral magnetization in linear re-
sponse. This implies that, generically, there will be static
components of the chain spins in the spiral �x-y� plane. Since
the spiral field is proportional to J� and the chain suscepti-
bility is generally proportional to 1 /J, these static compo-
nents are of order J� /J.

This simple linear response, however, is not the complete
story. A much more detailed analysis is needed to resolve the
more subtle effects of the spiral field beyond linear response,
in conjunction with the interchain couplings described in
Sec. III. The nature of this more complete analysis depends
crucially upon the magnitude of q. When q is small, the spins
respond in a way which is similar to the response to a uni-
form magnetic field. A systematic approach is then possible,
in which the Hamiltonian is transformed into the slowly ro-
tating frame in which the external field is uniform. This is
tractable because for small q the non-Heisenberg interactions
induced by the change of frame are weak. Because of the
expected smallness of q, we focus on this case in the remain-
der of this section.

In the opposite limit of a “large” wave vector, which is
incommensurate with the dominant fluctuations of the 1D
Heisenberg chain, i.e., q, ��−q��O�1�, the field weakly
couples to the spin chain. Indeed, the leading O�h� effects
average out over space, and instead only subdominant terms
are induced at O�h2�. In this limit these weaker O�h2� terms
are crucial in determining the final state of the system.
Though this limit is actually conceptually simpler than the
opposite one, it is technically challenging because the effects
of spiral field are determined by very short-wavelength prop-
erties of the Heisenberg spins. As a result, we are not unam-
biguously able to resolve the ground state in this limit. How-
ever, the ambiguity is small: we show in Appendix B that the
system at zero temperature is in one of only two possible
phases. One of these is the same noncoplanar state which we
find in the small-q limit �the other is a coplanar state�. This
supports the notion that, at least up to some critical O�1�

value of q �and possibly for all q�, the ground state evolves
smoothly from the small-q limit.

A. Transformation to rotated frame

From here on, we assume q�1. It is advantageous to
rotate the chain spins toward the direction of the spiral mag-
netic field,

Sx,y → RxSx,y ,

Rx = � 0 + sin�qx� − cos�qx�
0 − cos�qx� − sin�qx�

− 1 0 0
� . �43�

The rotation Rx amounts to −� /2 rotation about the y axis
followed by a rotation about the z axis with angle qx. We find
that under rotation �43� the magnetic-field term becomes

H̃S = − 2h0 cos�q/2��
x,y

Sx+1/2,y
z . �44�

H0 transforms into

H0 = J�
x,y

�Sx−1/2,y
x Sx+1/2,y

x + cos q�Sx−1/2,y
y Sx+1/2,y

y

+ Sx−1/2,y
z Sx+1/2,y

z � + sin q�Sx−1/2,y
y Sx+1/2,y

z

− Sx−1/2,y
z Sx+1/2,y

y �� . �45�

In the limit of small q, which we focus on, this Hamiltonian

is conveniently split into Heisenberg one H̃0 with the modi-

fied exchange constant J̃=J cos q,

H̃0 = J̃�
x,y

Sx−1/2,y · Sx+1/2,y , �46�

an effective Ising anisotropy H̃1 along the x axis,

H̃1 = J�1 − cos q��
x,y

Sx−1/2,y
x Sx+1/2,y

x , �47�

and an effective Dzyaloshinskii-Moriya �DM� interaction H̃2,

H̃2 = J sin q�
x,y

�Sx−1/2,y
y Sx+1/2,y

z − Sx−1/2,y
z Sx+1/2,y

y � . �48�

Thus, H0= H̃0+ H̃1+ H̃2.

1. Low-energy limit

It is appropriate now to take a low-energy limit, for which
we use the non-Abelian spin-current formulation. The
zeroth-order Heisenberg Hamiltonian in the continuum limit
yields the fixed-point term plus a backscattering correction,

H̃0→ H̃0+Hbs. The fixed-point term, written in the Sugarawa
form, is

H̃0 =
2�ũ

3 �
y
	 dx�JL,y · JL,y + JR,y · JR,y� , �49�

where ũ=cos qu is the modified spinon velocity. To the order
we work in this section, it is sufficient to take ũ�u=�J /2.
The backscattering correction is
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Hbs = �
y
	 dxg̃bsJL,y · JR,y , �50�

where g̃bs=cos qgbs�0. Again we can approximate g̃bs
�gbs here.

The Ising anisotropy can also be expressed in terms of
currents. One must take care since it is a composite operator.
One obtains

H̃1 = �1 − cos q��
y
	 dx�2�u

3
�JL,y

x JL,y
x + JR,y

x JR,y
x �

+ gbsJR,y
x JL,y

x � . �51�

The DM �see Ref. 63 for details� and external field H̃S terms
add up to

H̃2 + H̃S = �
y
	 dx�d̃�JR,y

x − JL,y
x � − h̃�JR,y

z + JL,y
z �� , �52�

where d̃= �3 /��sin qJ and h̃=4h0 cos�q /2�. We will consider
both contributions in Eq. �52� on equal footing. Formally, we
consider q�1 and J� /J�1 but with qJ /J� arbitrary. In this

limit we may approximate J̃J, d̃3qJ /�, and h̃2h0.

Moreover, H̃1 can be dropped completely since it represents
next �q2� order anisotropy corrections to both H0 and the
marginal backscattering term Hbs. �In principle, terms of or-
der q2 could be included by considering velocity shifts and
small anisotropy corrections to the backscattering coupling
gbs. However, when q is small enough, these higher-order
corrections will not affect the outcome of the analysis in an
essential way.�

Finally, the relevant interchain interactions read

H� = �
y
	 dx
�NNy · Ny+1 + �		y	y+1� . �53�

The analysis in Sec. III shows that coupling constants �N,	
are of order �J��4 /J3, and importantly, �N�0.

B. Chiral SU(2) rotation

An unique feature of the WZNW field theory is its emer-
gent chiral symmetry under independent SU�2� rotations for
the left- and right-moving sectors. We take advantage of this
to remove the DM term in Eq. �52�. Specifically, we rotate
the right and left chiral spin currents about the y axis by
opposite angles, +� and −�, respectively,

JR,y → RRJR,y, JL,y → RLJL,y , �54�

with

RR/L = � cos��� 0 �sin���
0 1 0

�sin��� 0 cos���
� , �55�

where �= +atan�d̃ / h̃�. Under the rotations in Eq. �54�, the
staggered magnetization and dimerization transform to

Ny
x,z → Ny

x,z,

Ny
y → cos �Ny

y + sin �	y ,

	y → cos �	y − sin �Ny
y . �56�

Due to the chiral SU�2�R�SU�2�L symmetry, the low-energy

H̃0 Hamiltonian is unaffected. Vector perturbation �52� sim-

plifies to H̃z, where

H̃z = − ��h̃�2 + �d̃�2 �
y
	 dx�JL,y

z + JR,y
z � . �57�

Under the rotation the backscattering term transforms into

Hbs = �
x,y
�g1

2
�JL,y

+ JR,y
− + JL,y

− JR,y
+ �

+
g2

2
�JL,y

+ JR,y
+ + JL,y

− JR,y
− � + g4JL,y

z JR,y
z

+
g3

2
�JL,y

z JR,y
+ + JL,y

z JR,y
− − JL,y

+ JR,y
z − JL,y

− JR,y
z �� ,

�58�

where the couplings gi can be expressed in terms of the
backscattering gbs,

g1 =
gbs

2
�1 + cos 2��, g2 =

gbs

2
�cos 2� − 1� ,

g3 = gbs sin 2�, g4 = gbs cos 2� . �59�

The interchain perturbation H� is significantly affected as
well, and now reads

H� = �
x,y


cos2 ���		y	y+1 + �NNy
yNy+1

y �

+ sin2 ���N	y	y+1 + �	Ny
yNy+1

y �

+ ��N − �	�cos � sin ��	yNy+1
y + Ny

y	y+1�

+ �NNy
xNy+1

x + �NNy
zNy+1

z � . �60�

C. Absorption of the field hz

The benefit of the chiral rotation is that within Abelian
bosonization43,64,65 we can now absorb the magnetic field

hz
ª

��h̃�2+ �d̃�2 by the usual shift66,67

�s,y → �s,y +
1

�2�

hz

u
x , �61�

for all y. Note that hz=J���2s0�2+ �3qJ /�J��2 is O�J�� in the
scaling limit considered here �see the discussion after Eq.
�50��.

This transforms the currents in the following way:

JL,y
� → JL,y

� e�i�hz/u�x, JR,y
� → JR,y

� e�i�hz/u�x, �62�
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JL,y
z → JL,y

z +
hz

4�u
, JR,y

z → JR,y
z +

hz

4�u
. �63�

The latter transformation explicitly embodies the linear re-
sponse of the chain magnetization My

z =JR,y
z +JL,y

z to the field.
The scaling dimension 1/2 fields transform according to

Ny
z → cos�hz

u
x�Ny

z + sin�hz

u
x�y , �64�

y → cos�hz

u
x�y − sin�hz

u
x�Ny

z , �65�

and Ny
x and Ny

y remain unchanged. Making this shift renders
several terms in Eqs. �58� and �60� oscillatory, at scales x
�u /hz.

D. Renormalization-group equations

Now we consider the effect of the various couplings. Be-
cause of the explicit oscillatory factors introduced by the
shift in Eq. �61�, we must consider two separate regimes of
the flow. First, on scales shorter than the period of these
oscillations, the oscillations themselves can be neglected,
and we should consider all the couplings in Eqs. �58� and
�60�. On longer scales, the oscillatory couplings may be
dropped entirely. The reader may be familiar with a similar
treatment of the effects of a field on a Heisenberg chain by
Affleck and Oshikawa.66

1. Short-scale flows

Consider first the short-scale flows, i.e., the regime when
hz

u e�a0�1. This means

0 � � � �� = ln
u

hza0
� ln�J/J�� . �66�

We neglect completely the effect of the oscillatory factors
induced in Hbs and H�. Although the form in Eq. �58� is
complicated, the flows remain simple. This is because Eqs.
�58� and �59� are obtained from the chiral SU�2� rotation
which is a symmetry of the fixed-point Hamiltonian. Thus,
since the field hz has no effect in this energy range, the flows
remain fully SU�2� symmetric. They are simply

dgbs

d�
=

�gbs����2

2�u
, �67�

and

d�N

d�
= �N −

1

4�u
gbs�N, �68�

d�	

d�
= �	 +

3

4�u
gbs�	. �69�

One can check this simple result by directly calculating the
flow equations for g1¯g4, and showing that the forms in Eq.
�59� are preserved by these equations. This is the result of the
simple argument above.

We note that it is sufficient to work only to linear order in
the relevant couplings �N and �	 since their initial values are
of order �J��4 and therefore remain small over this range of �
�they increase only by a factor of e��J /J��. To this order,
they do not feed back into the flow of gbs. The usual solution
to Eq. �67� obtains

gbs��� =
gbs

�1 −
gbs

2�u
�� . �70�

Since gbs�0, it becomes small under renormalization, and
specifically of order u /� for ��1. Inserting this into the
remaining equations and solving gives

�N��� = �1 −
gbs�

2�u
�1/2

e��N�0� , �71a�

�	��� = �1 −
gbs�

2�u
�−3/2

e��	�0� . �71b�

Evaluating this at �=�� and using Eq. �16� for the initial
conditions gives

�N���� �
1

2�4� �gbs�ln�J/J��
2�u

�1/2 �J��3

J2 , �72a�

�	���� � −
3

4�4� �gbs�ln�J/J��
2�u

�−3/2 �J��3

J2 . �72b�

Note that these couplings indeed remain small at this scale.
Furthermore, the staggered magnetization coupling �N is al-
ready parametrically enhanced over the dimerization cou-
pling �	, by a factor of ln2�J /J��.

2. Long-scale flows

Now we consider the renormalization on scales longer
than the period of the oscillations induced by the field shift.
Here the SU�2� symmetry is truly broken, and the RG devi-
ates from the simple one above. We drop all oscillating terms
�this includes g1 and g3 and several of the terms in H��, so

that the remaining perturbations to the bare Hamiltonian H̃0
are

Hbs = �
x,y
� g̃2

2
�JL,y

+ JR,y
+ + JL,y

− JR,y
− � + g̃4JL,y

z JR,y
z � ,

H� = �
x,y


�̃NyNy
yNy+1

y + �̃NxNy
xNy+1

x + �̃+�Ny
zNy+1

z + 	y	y+1�� ,

�73�

where we have introduced the new coupling constants g̃2, g̃4,
�̃Nx, �̃Ny, and �̃+. They should be matched at �=�� to the
couplings from the short-scale flows, defined in Eqs. �60�
and �58�, which implies

g̃2���� = − gbs����sin2 � ,

g̃4���� = gbs����cos 2� ,
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�̃Nx���� = �N���� ,

�̃Ny���� = cos2 ��N���� + sin2 ��	���� ,

�̃+���� = �cos2 ��	����

+ �1 + sin2 ���N�����/2. �74�

We now compute the RG equations for the perturbations in
Eq. �73� to the bare Hamiltonian H0 using well-established
OPEs for the non-Abelian spin currents �see, for example,
Ref. 40�. After some lengthy calculations we find

dg̃2

d�
= −

g̃4g̃2

2�u
,

dg̃4

d�
= −

g̃2
2

2�u
,

d�̃Nx

d�
= �1 −

1

4�u
g̃4 +

1

2�u
g̃2��̃Nx,

d�̃Ny

d�
= �1 −

1

4�u
g̃4 −

1

2�u
g̃2��̃Ny ,

d�̃+

d�
= �1 +

1

4�u
g̃4��̃+. �75�

It is important to understand how these equations lead to an
instability. The equations for g̃2 and g̃4 are decoupled and can
be solved separately. They have the standard form found in
the Kosterlitz-Thouless �KT� analysis.47 One recalls that the
quantity

Y = g̃2
2 − g̃4

2 �76�

is a constant of the motion. The flows are unstable provided
g̃4����� �g̃2�����, which is always satisfied except when
�=� /2 exactly, at which point it becomes an equality. That
is, for �� �0,� /2�, the trajectories tend to g̃4→−� and
g̃2→ +�. We fix Y by the initial conditions,

Y = �gbs�����2�sin4 � − cos2 2�� . �77�

Hence, Y is negative for �� �0,acos�2 /3� and positive for
�� �acos�2 /3,� /2�. Writing g̃2

2=Y + g̃4
2 we can solve the KT

equations for g̃4. When Y �0, i.e., in the crossover regime of
the KT flow, we have

atan� g̃4���
�Y

� = atan�gbs����cos 2�

�Y
� −

�Y

2�u
�� − ��� .

�78�

The coupling g̃4 clearly diverges when the right-hand side of
this equation reaches � /2 plus an integer times �. The
“time” �d of this divergence is

�d = �� +
2�u

�gbs�����

�/2 − atan� cos 2�

�
�

�
, �79�

where we define �=�Y / �gbs�����. Using ��� ln�J /J�� and
gbs�����2�u /��, we obtain

�d = ln�J/J���1 +

�/2 − atan� cos 2�

�
�

�
� . �80�

One can check that �d / ln�J /J�� increases monotonically
from 4 when �=acos�2 /3 to infinity as �→� /2. Similarly,
when Y �0 �strong-coupling regime� g̃4��� diverges at the
length scale

�d = ln�J/J���1 + atanh� �̄

cos 2�
��1/�̄�� , �81�

where �̄=�−Y / �gbs�����. In this regime �d / ln�J /J�� takes the
value of 4 at �=acos�2 /3, increases monotonically with de-
creasing �, and diverges at �=0.

With the values at �=�� given by Eqs. �71� and �74� the
relevant couplings �̃Nx, �̃Ny, and �̃+ become of order 1 at the
length scale �o�4 ln�J /J�� �so that �o−���3 ln�J /J���,
which is always smaller than the scale �d. The most relevant
of these turns out to be �̃Nx, as can be seen, e.g., by examin-
ing the ratio

�̃Nx���

�̃Ny���
=

�̃Nx����

�̃Ny����
exp�+

1

�u
	

��

�

dxg̃2�x�� , �82�

where �remember that gbs�0�

g̃2���� = �gbs�����sin2 � =
�gbs�����d̃2

d̃2 + h̃2
. �83�

From this clearly �̃Nx becomes parametrically larger than �̃Ny

under renormalization �for q�0�. Similar analysis shows
that �̃Nx is also enhanced relative to �̃+. Thus, for q�0, we
find that the staggered magnetization �̃Nx =�Nx dominates.
Hence, the spins align antiferromagnetically along the x di-

rection, Ŝx
x, in the rotated �“comoving”� coordinate frame.

3. Ordering pattern of chain spins

Let us now infer what this means in terms of the original
spins, in the fixed coordinate frame. It is necessary to trace
back the transformations of the spin operators in Eqs. �43�,
�54�, and �61�. This is straightforward but tedious. We will
not give a general expression of the relation of the micro-
scopic spins to the continuum operators after the final trans-
formation, which is not illuminating. Instead, we give the
result for the expectation value of the spin operators given
that, as argued above, in the rotated variables the ordering is
very simple:

�Ny
a� = M�− 1�y�a,x, �84�

�JR
a� = �JL

a� = �� = 0. �85�

Here M �0 represents the spontaneous moment and will be-
come the staggered magnetization. The �−1�y factor obtains
because �̃Nx �0.

Now we relate the spin operators as described above to
the continuum fields:
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�Sx+1/2,y
x � = −

hz

2�u
cos � cos qx , �86�

�Sx+1/2,y
y � = −

hz

2�u
cos � sin qx , �87�

�Sx+1/2,y
z � = − �− 1�x+yM . �88�

Thus, indeed the dominating �Nx term orders the chain spins
antiferromagnetically along the z axis perpendicular to the
x-y s-spiral plane. The nonzero components of the spins in
the x-y plane are induced by the local field arising from the
ordered interstitial moments. Note that they are of O�J� /J�,
which is much larger than M ��J� /J�2. Thus the static mo-
ments on the chains are predominantly in the plane of the
spiral, with a smaller staggered component in the perpen-
dicular �z� direction �see Fig. 2�.

The case of ferromagnetic order among the interchain

spins is obtained by setting q=0. This implies d̃=0 so that
g̃2=0; see Eq. �83�. The chains are subjected to the uniform

magnetic field h̃ only. This leads to �=0 and, as a result,
symmetry in the Nx-Ny plane: �̃Nx / �̃Ny =1. The chain spins S
order nearly collinearly with a ferromagnetic component of
order O�J� /J� and smaller antiferromagnetic component of
order O��J� /J�2� perpendicular to the ferromagnetic mo-
ments. Note that in this case, because the interstitial spins
and the predominant moment of the chain spins are ferro-
magnetically ordered and hence collinear, the full magnetic
order is actually coplanar. For instance, if the ferromagnetic
moments are aligned in the x̂ direction, the antiferromagnetic
component of the chain spins will be aligned along some
axis ê in the y-z plane, and all the spins are contained within
the plane spanned by x̂ and ê. Furthermore, this state is fer-
rimagnetic, i.e., has a macroscopic net moment, since the
moments of the ferromagnetically ordered interstitial spins
are unequal to the opposing in-plane component of the chain-
spin moments.

VII. SUMMARY AND DISCUSSION

In this work we have analyzed the ground-state phase of
the quantum Heisenberg antiferromagnet on the kagome lat-
tice with spatially anisotropic exchange. We have studied this
problem in the quasi-1D limit, where the lattice is broken up
into antiferromagnetic spin-1/2 chains that are weakly inter-
acting via intermediate dangling spins s �see Fig. 1�. This
limit lends itself to a perturbative RG analysis in the weak
exchange interaction J� using bosonization and current alge-
bra techniques. We find that there is a natural separation of
energy scales: the intermediate spins order at an energy scale
of order �J��2 /J, at which the chains are not influenced by
the interactions among themselves and with the interstitial
spins. The low-energy behavior of the chains, on the other
hand, is only modified at O��J��4�, as geometric frustration
prevents the generation of relevant interchain interactions at
the larger scale �J��2 /J. We have used perturbative and nu-
merical methods to determine the effective interactions Ji
among the interstitial spins s, which arise at O��J��2�. It turns

out that the spins s order in a coplanar cycloidal spiral with
wave vector q parallel to the chain direction. The magnitude
of the wave vector is presumably rather small �if not vanish-
ing�. It depends sensitively on the strength of further-
neighbor interactions among the interstitial spins, which can-
not be reliably determined from our approach. The ordered
interstitial moments induce a spiral order of the chain spins
of O�J� /J�. Besides this, the chain spins exhibit a small an-
tiferromagnetic component of O��J� /J�2� that points along
the axis perpendicular to the spiral plane. This noncoplanar
ground state of the spatially anisotropic kagome antiferro-
magnet is illustrated in Fig. 2.

It is interesting to compare to recent results for this lattice
in the spatially anisotropic limit. Wang et al.38 found a co-
planar ferrimagnetic chirality stripe order using a semiclas-
sical analysis �see also Ref. 37�. In this state, the interstitial
spins are ferromagnetically ordered, and the chain spins are
ordered in an antiferromagnetic fashion, nearly collinearly
along an axis perpendicular to the interstitial moments, but
canted slightly in that direction. The ordering of the intersti-
tial spins is very close to our findings; i.e., it corresponds to
the special case q=0, which as we have described cannot be
excluded by our calculations. However, even in this case the
ordering pattern of the chain spins is quite different from that
in Ref. 38, insofar as we find that the chain spins have a
predominant ferromagnetic component antiparallel to the in-
terstitial spins �and only a considerably smaller antiferro-
magnetic component perpendicular to the interstitial spins�,
while Wang et al.38 obtained a predominantly antiferromag-
netic ordering among the chain spins.

Yavors’kii et al. in Ref. 37, on the other hand, used a
large-N expansion applied to the Sp�N�-symmetric generali-
zation of the model. In the limit J��J, they found that the
chains are completely decoupled, and the interstitial spins
show some �short-range� spin-spin correlation that is com-
patible with a spiral ordering pattern. While the mean field
treatment of this large-N approach seems to miss the pre-
dominant spiral ordering of the chain spins, the spiral order-
ing of the interstitial spins is in agreement with the findings
of this work.

Numerical studies of the spatially anisotropic kagome
model should be very helpful in establishing the range of
spatial anisotropy of exchange interaction where the nonco-
planar ordered state found in this work represents the ground
state of the system. We hope that our work will inspire fur-
ther investigations of this interesting problem.
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APPENDIX A: RG CALCULATIONS

In this appendix we present a detailed derivation of flow
equations �14� and �15� using standard OPE relations for the
continuum fields.

1. Derivation of Eq. (14)

The first-order terms in RG equation �14� originate from
the rescaling of the time and space coordinates and the re-
definition of the fields �see Eq. �12��. As already discussed in
the main text, the interaction terms V1 and V2 �Eq. �13�� are
local in space, which means that their scaling dimensions
have to be compared with 1, the dimensionality of time 
.
Interstitial spins have scaling dimension 0, while M �N�
fields are of scaling dimension 1 �1/2�. Consequently, the
scaling dimension of V1 is 1, while that of V2 is 3/2, from
which follows that the RG equation for the coupling �1 does
not contain a linear term, while that for �2 starts with
�1−3 /2��2=−�2 /2, in agreement with the first line of Eq.
�14�.

The second and third lines of Eq. �14� describe the flow of
the fluctuation-generated interchain couplings Vch �Eq. �8��
and Vch

�1� �Eq. �9��, which operate in two-dimensional space-
time. As a result, the scaling dimensions of the effective
interchain interactions have to be compared with 2. The first-
order terms in the second line of Eq. �14� are then a direct
consequence of the fact that the scaling dimension of the ��N
interaction is 3, while that of the �M interaction is 2. Simi-
larly, positive linear terms in the last line of Eq. �14� follow
from the strong relevance of the interchain couplings Vch
�Eq. �8��, which have scaling dimension 1.

The second-order corrections to flow equation �14� are
derived from contracting terms in perturbation expansion
�11�. In order to obtain the one-loop corrections in Eq. �14�,
we need to consider contributions to the second-order term in
Eq. �11� that either yield a renormalization of the couplings
�i or generate new interchain interactions. We begin by se-
lecting from these contributions terms that contain a product
of two intermediate spins from the same site, say, �2x+ 1

2 ,y
+ 1

2 �. These local contributions read

1

2
T	 d
1d
2sy+1/2

a �
1�sy+1/2
b �
2�

�
�1
2�My

a�
1� + My+1
a �
1���My

b�
2� + My+1
b �
2��

+ 2�1�2�My
a�
1� + My+1

a �
1���x�Ny
b�
2� + Ny+1

b �
2��

+ �2
2�x�Ny

a�
1� + Ny+1
a �
1���x�Ny

b�
2� + Ny+1
b �
2��� , �A1�

where we have suppressed the x coordinate for brevity. Even
though the interchain spins sy+1/2 have no dynamics of their
own at this level, they must be time ordered as follows:48

Tsy+1/2
a �
1�sy+1/2

b �
2� = �
1−
2
sa�
1�sb�
2� + �
2−
1

sb�
2�sa�
1�

=
�ab

4
+

i

2
��t − �−t�abcsc�
� , �A2�

where �t is the step function, 
= �
1+
2� /2 is the center-of-
mass time, and t=
1−
2 is the relative time.

The off-diagonal term in Eq. �A2� �which is proportional
to abc� is responsible for the renormalization of the Kondo-
type couplings �1 and �2. As an example we consider the
renormalization of �1, which comes from the second line in
Eq. �A1�. Separating slow and fast degrees of freedom, we
can apply OPE �4� �and a similar expression for the left
currents� to the product of two spin currents at nearby points
�i.e., My

a�
1�My
b�
2�→ iabdMy

d�
� / �2�t��. Combining this
with Eq. �A2� leads to

−
�1

2

4�u
	 d
sy+1/2

c �
�My
c�
�	

���t��b�

dt

�t�
. �A3�

The integral with �t��b� does not contribute to the renor-
malization. The one-loop correction to the flow equation for
�1 can now be read off Eq. �A3� as �d��1

2 /�u, which gives
us the first equation in Eq. �14�.

The renormalization of �2 is computed in a similar way;
one only needs to realize that it comes from the third line in
Eq. �A1�. Fusing My

a with �xNy
b via the OPE �see Ref. 40 for

more details�

My
a�
1��xNy

b�
2� = lim
x�→x

My
a�x�,
1��xNy

b�x,
2�

=
− �ab	y�x,
�

2��ut + a0�t�2 +
iabc�xNy

c�x,
�
2��ut + a0�t�

,

�A4�

leads to the following one-loop correction of the flow equa-
tion for �2: ��2�d��1�2 /�. It is useful to note that rescaling
of space and time does not affect quadratic terms, as each of
them is explicitly proportional to the RG step d�, which
comes from the shell integration of relative coordinates.

The second-order corrections to the flow equations for the
interchain couplings �M and ��N follow from the diagonal
term in Eq. �A2� �which is proportional to �ab�. For example,
applying relation �A2� to the second line of Eq. �A1� pro-
duces

�1
2

4u
	 d
My

a�
�My+1
a �
�	

���t��b�

dt .

To generate from this the �M term in Eq. �9� one needs to
sum all local contributions such as the one above using
�x¯ =�dx / �2a0�¯, as appropriate for the kagome geom-
etry. As a result one finds that �M ��1

2d�. Similarly, the other
interchain coupling, ��N in Eq. �9�, can be derived starting
from the last line in Eq. �A1�.

Finally, we turn to the relevant interchain interactions �N
and �	 which are generated by fusing the marginal interac-
tion �M and the irrelevant interaction ��N. Details of this
procedure have been described previously in Refs. 39 and
40. Here we would only like to mention that the RG scheme
that we have adopted here �i.e., integrating the one-loop x
integrals over the entire space of relative x coordinates while
restricting the relative time integral to the shell, �� �t��b��,
which is different from the RG scheme of Refs. 39 and 40,
does not modify the outcome of the calculation in Refs. 39
and 40 in any significant way. Namely, upon fusing
My

a�x1 ,
1� with �xNy
b�x2 ,
2� on chain y �and, similarly, on
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chain y�1�, one arrives at the following integral over the
relative coordinate x=x1−x2 and over relative time t=
1
−
2: I��−�

� dx����t��b�dt�x2+ t2�−2��b−1��−2. This ex-
plains the structure of the quadratic terms in the last line of
Eq. �14�.

Additionally, we note that the third line in Eq. �A1� in
combination with the first term in Eq. �A4� results in a
strongly relevant contribution �scaling dimension 1/2�,

− 6�1�2

�a0u
	 d
	y�x,
� . �A5�

In the two-dimensional version of the spatially anisotropic
kagome lattice, this term cancels out since the summation
over interstitial spin sites �that is, over x� brings in the factor
�−1�x �which originates from the staggering factor in Eq.
�2a��, resulting in �d
dx�−1�x	y�x ,
�→0. This is how sym-
metry �3c� manifests itself.

In contrast, for the kagome strip of extension one in the y
direction, the staggering factor �−1�x does not appear since
the interstitial spins are separated by two lattice spacings. As
a consequence, expression �A5� turns into �d
dx	y�x ,
�,
which implies spontaneous dimerization of the kagome strip,
an ordering pattern that does not reduce the translational
symmetry. This strongly relevant term was missed in previ-
ous analytical work.50 Numerical studies, on the other hand,
did find dimerized ground states.51

2. Derivation of Eq. (15)

To derive flow equation �15�, we need to select from the
second-order term in Eq. �11� contributions that contain
products of two different intermediate spins with the same y
coordinate, say, y+ 1

2 . Among these, the most important con-
tributions are those that involve products of uniform or stag-
gered magnetizations from the same chain,

+ 2 �
1

2
T �

x1,x2

	 d
1d
2s2x1+1/2
a �
1�s2x2+1/2

b �
2�

� ��1
2Ma�2x1,
1�Mb�2x2,
2� + �2

2�xN
a�2x1,
1��xN

b�2x2,
2�� ,

�A6�

where we have suppressed the y coordinate for brevity. The
factor of 2 in the first line of Eq. �A6� arises because there is
an equal contribution from both the y and the �y+1� chains.
Since the spins s2x+1/2 at different sites commute and time
ordering of the continuum fields M and N is automatic, we
can disregard the operator T in the above expression pro-
vided we exclude the case x1=x2, which was treated in Ap-
pendix A 1.

By splitting the integrals of Eq. �A6� into slow and fast
degrees, we can use the OPEs �Eq. �4�� to fuse the product of
two continuum fields at nearby points. In this way, we derive
from Eq. �A6� the one-loop renormalization to the first term
of the interaction H� �Eq. �10��,

�
x1,x2

	 d
s2x1+1/2
a s2x2+1/2

a ��1
2IM

+ + �1
2IM

− + �2
2IN� , �A7a�

with the integrals

IM
� = 	

���t��b�

dt
1/�8�2�

�ut � i�x1 − x2� + a0�t�2 , �A7b�

IN = 	
���t��b�

dt�x1
�x2

CN

�u2t2 + 4�x1 − x2�2
, �A7c�

where CN��2��−3/2 is the amplitude of the �NaNa� cor-
relator. The integral over the infinitesimal interval �� ,b�� in
Eqs. �A7b� and �A7c� amounts to replacing t with ��. The
subsequent rescaling turns the cutoff �� back into the micro-
scopic cutoff �, while x→x�=xe−�. Simplifying IM = IM

+ + IM
−

and explicitly taking derivatives in IN leads to Eq. �15�. It is
worth noting that the two contributions IM and IN are of
opposite signs, resulting in a fast decay of interactions be-
tween interchain spins s.

APPENDIX B: CHAIN ORDERING IN THE LIMIT OF A
LARGE SPIRAL WAVE VECTOR (qÈO[1])

In this Appendix, we briefly discuss how the chain spins
might order under the perturbation of a spiral magnetic field
with a large wave vector q= �q ,0�, where q�O�1�. In this
case the transformation to a rotated frame as done in Sec.
VI A is not useful, as the generated interaction terms come
with couplings of the order of the bare exchange J; see Eqs.
�47� and �48�. Instead, we should remain in the original non-
rotated basis, which leaves the dominant O�J� interactions in
their simplest form. Moreover, the rapid oscillation of the
spiral field, which is highly incommensurate with the “natu-
ral” wave vectors 0 and � of correlations of the Heisenberg
chains, ensures that its effects rapidly average out to leading
order. However, to O�h2� we may expect nonoscillating in-
teractions to be generated. In principle these can be obtained
by a perturbative analysis expanding in powers of HS �Eq.
�40��.

As usual, symmetry analysis is helpful in figuring out the
type of terms that can be expected from such a calculation.
There are two important symmetries. First, the spiral field
term breaks both spin-rotational and translational symme-
tries, but is invariant under a translation x→x+1 followed by
a simultaneous spin rotation by the angle q about the z axis.
Spiral state �39� is also invariant under spatial inversion
�x→−x� followed by a change of sign for the y and z com-
ponents of the spins �Sy,z→−Sy,z�. Taking into account these
constraints, the only possible marginal or relevant terms
which may be generated in a single chain are

Hh
�2� = �

xy
	 dx
dz�JyR

z − JyL
z � + �gzJyR

z JyL
z � . �B1�

We neglect here terms that are already present without the
spiral field, and those that couple different chains as these
coupling constants are necessarily smaller by at least one
power of J� since the latter cannot be generated without
some bare interchain interactions.

A naive current algebra calculation using the continuum
approximation �Eq. �2a�� for the spin operators indeed pro-
duces precisely these terms at O�h2�. However, the resulting
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explicit expressions are not reliable, as they are dominated
by short distances of order q−1, in which the continuum limit
is inappropriate. A lattice scale calculation, similar in spirit to
that in Sec. IV �yet closer to that in Ref. 42�, is required.
Unfortunately, it turns out that to do so requires detailed
information on the lattice scale properties of certain four-spin
correlation functions of a Heisenberg chain. These data are
not available to our knowledge. Therefore, we must rely
upon the symmetry considerations alone, assuming no par-
ticular signs or magnitudes for dz and �gz above, apart from
the fact that both are expected to be of O�h2 /J�.

Fortunately, this does not result in significant ambiguity.
This is largely because the nominally “relevant” DM correc-
tion dz has trivial effects. Similar to the magnetic field in Eq.
�61�, it can be removed by a simple shift. Unlike the case in
Sec. III B, however, the shift does not affect the backscatter-
ing Hbs, which is written in terms of the field �, which is
dual to �. The only effect of the shift is to change the order-
ing momentum, if any, of the Nx,y components. It does not
determine the nature of the ordering instability.

The anisotropy term �gz is important, as it tips the balance
of competition between different components of N fields in
the interchain Hamiltonian H� �Eq. �53��. With the help of an

OPE-based calculation similar to the one that led to Eq. �76�,
we find

d

d�
ln

�Nz

�Nx
=

�gz

4�u
. �B2�

This tells us that the type of N order is determined by the
sign of the generated �gz. Positive �gz favors Nz components,
leading to the noncoplanar ordering pattern found in Sec.
VI D 3, in the small-q limit. Negative �gz, on the other hand,
would prefer Nx,y components, without breaking the symme-
try between them. Such a state is clearly coplanar and dif-
ferent from the one found in Sec. III B. Note that the DM
term dz will affect the ordering wave vector of this state but
not the noncoplanar one. Which of these two situations is
obtained cannot be discriminated by our analysis since the
sign of �gz is not determined. However, it is rather natural to
expect that as q is reduced from O�1� values, one should
observe behavior consistent with the small-q analysis. This
would suggest that �gz�0 for a nonvanishing range of q
greater than zero, and indeed it is possible that this is the
case for all q.
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